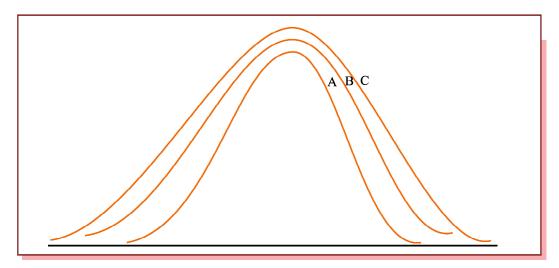

UNIT II: DISPERSION

LEARNING OBJECTIVES


After reading this chapter, students will be able to understand:

- To understand different measures of Dispersion i.e Range, Quartile Deviation, Mean Deviation and Standard Deviation and computational techniques of these measures.
- To learn comparative advantages and disadvantages of these measures and therefore, which measures to use in which circumstance.
- To understand a set of observation, it is equally important to have knowledge of dispersion which indicates the volatility. In advanced stage of chartered accountancy course, volatility measures will be useful in understanding risk involved in financial decision making.

14.2.1 DEFINITION OF DISPERSION

The second important characteristic of a distribution is given by dispersion. Two distributions may be identical in respect of its first important characteristic i.e. central tendency and yet they may differ on account of scatterness. The following figure shows a number of distributions having identical measure of central tendency and yet varying measure of scatterness. Obviously, distribution is having the maximum amount of dispersion.

Figure 14.2.1

Showing distributions with identical measure of central tendency and varying amount of dispersion.

Dispersion for a given set of observations may be defined as the amount of deviation of the observations, usually, from an appropriate measure of central tendency. Measures of dispersion may be broadly classified into

1. Absolute measures of dispersion.

2. Relative measures of dispersion.

Absolute measures of dispersion are classified into

(i) Range

(iii) Standard Deviation

(ii) Mean Deviation

(iv) Quartile Deviation

Likewise, we have the following relative measures of dispersion:

Coefficient of Range.

(ii) Coefficient of Mean Deviation

(iii) Coefficient of Variation

(iv) Coefficient of Quartile Deviation.

We may note the following points of distinction between the absolute and relative measures of dispersion:

- I Absolute measures are dependent on the unit of the variable under consideration whereas the relative measures of dispersion are unit free.
- II For comparing two or more distributions, relative measures and not absolute measures of dispersion are considered.
- III Compared to absolute measures of dispersion, relative measures of dispersion are difficult to compute and comprehend.

Characteristics for an ideal measure of dispersion

As discussed in section 14.2.1 an ideal measure of dispersion should be properly defined, easy to comprehend, simple to compute, based on all the observations, unaffected by sampling fluctuations and amenable to some desirable mathematical treatment.

(14.2.2 RANGE

For a given set of observations, range may be defined as the difference between the largest and smallest of observations. Thus if L and S denote the largest and smallest observations respectively then we have

Range =
$$L - S$$

The corresponding relative measure of dispersion, known as coefficient of range, is given by

Coefficient of range =
$$\frac{L-S}{L+S} \times 100$$

For a grouped frequency distribution, range is defined as the difference between the two extreme class boundaries. The corresponding relative measure of dispersion is given by the ratio of the difference between the two extreme class boundaries to the total of these class boundaries, expressed as a percentage.

We may note the following important result in connection with range:

Result:

Range remains unaffected due to a change of origin but affected in the same ratio due to a change in scale i.e., if for any two constants a and b, two variables x and y are related by y =a + bx

Then the range of y is given by

$$R_{y} = |b| \times R_{x}$$
 (14.2.1)

Example 14.2.1: Following are the wages of 8 workers expressed in Rupees. 82, 96, 52, 75, 70, 65, 50, 70. Find the range and also its coefficient.

Solution: The largest and the smallest wages are L = 796 and S = 730

Thus range = ₹ 96 – ₹ 50 = ₹ 46

Coefficient of range =
$$\frac{96-50}{96+50} \times 100$$
$$= 31.51$$

Example 14.2.2: What is the range and its coefficient for the following distribution of weights?

50 - 5455 - 5960 - 6465 - 6970 - 74Weights in kgs. :

No. of Students: 12 18 23 10 3

Solution: The lowest class boundary is 49.50 kgs. and the highest class boundary is 74.50 kgs. Thus we have

Range = 74.50 kgs. - 49.50 kgs.= 25 kgs.

Also, coefficient of range =
$$\frac{74.50 - 49.50}{74.50 + 49.50} \times 100$$

= $\frac{25}{124} \times 100$
= 20.16

Example 14.2.3: If the relationship between x and y is given by 2x+3y=10 and the range of x is ₹ 15, what would be the range of y?

Solution: Since 2x+3y=10

Therefore,
$$y = \frac{10}{3} - \frac{2}{3}x$$

Applying (14.2.1), the range of y is given by

$$R_y = |b| \times R_x = 2/3 \times \text{?} 15$$
$$= \text{?} 10.$$

14.2.3 MEAN DEVIATION

Since range is based on only two observations, it is not regarded as an ideal measure of dispersion. A better measure of dispersion is provided by mean deviation which, unlike range, is based on all the observations. For a given set of observation, mean deviation is defined as the arithmetic mean of the absolute deviations of the observations from an appropriate measure of central tendency. Hence if a variable x assumes n values $x_1, x_2, x_3 ... x_n$, then the mean deviation of x about an average A is given by

$$MD_A = \frac{1}{n} \sum |x_i - A|$$
 (14.2.2)

For a grouped frequency distribution, mean deviation about A is given by

$$MD_A = \frac{1}{n} \sum |x_i - A| f_i$$
(14.2.2)

Where x_i and f_i denote the mid value and frequency of the i-th class interval and

$$N = \sum f_i$$

In most cases we take A as mean or median and accordingly, we get mean deviation about mean or mean deviation about median.

A relative measure of dispersion applying mean deviation is given by

Coefficient of mean deviation =
$$\frac{\text{Mean deviation about A}}{\text{A}} \times 100$$
(14.2.3)

Mean deviation takes its minimum value when the deviations are taken from the median. Also mean deviation remains unchanged due to a change of origin but changes in the same ratio due to a change in scale i.e. if y = a + bx, a and b being constants,

then MD of y =
$$|b| \times MD$$
 of x(14.2.4)

Example 14.2.4: What is the mean deviation about mean for the following numbers?

5, 8, 10, 10, 12, 9.

Solution:

The mean is given by

$$\overline{X} = \frac{5+8+10+10+12+9}{6} = 9$$

Table 14.2.1

Computation of MD about AM		
X_{i}	$ x_i - \overline{x} $	
5	4	
8	1	
10	1	
10	1	
12	3	
9	0	
Total	10	

Thus mean deviation about mean is given by

$$\frac{\sum \left|x_{i} - \overline{x}\right|}{n} = \frac{10}{6} = 1.67$$

Example. 14.2.5: Find mean deviations about median and also the corresponding coefficient for the following profits ('000 \mathfrak{F}) of a firm during a week.

82, 56, 75, 70, 52, 80, 68.

Solution:

The profits in thousand rupees is denoted by x. Arranging the values of x in an ascending order, we get

52, 56, 68, 70, 75, 80, 82.

Therefore, Me = 70. Thus, Median profit = ₹ 70,000.

Table 14.2.2

Computation of Mean deviation about median				
X_{i}	x _i -Me			
52	18			
56	14			
68	2			
70	0			
75	5			
80	10			
82	12			
Total	61			

Thus mean deviation about median =
$$\frac{\sum |x_i - Median|}{n}$$

$$= (₹) \frac{61}{7}$$
$$= ₹8714.28$$

Coefficient of mean deviation =
$$\frac{\text{MD about median}}{\text{Median}} \times 100$$

= $\frac{8714.28}{70000} \times 100$
= 12.45

Example 14.2.6: Compute the mean deviation about the arithmetic mean for the following data:

x: 1 3 5 7 9 f: 5 8 9 2 1

Also find the coefficient of the mean deviation about the AM.

Solution: We are to apply formula (14.1.2) as these data refer to a grouped frequency distribution the AM is given by

$$\overline{x} = \frac{\sum f_i x_i}{N}$$

$$= \frac{5 \times 1 + 8 \times 3 + 9 \times 5 + 2 \times 7 + 1 \times 9}{5 + 8 + 9 + 2 + 1} = 3.88$$

Table 14.2.3

Computation of MD about the AM

x	f	$ x-\overline{x} $	$f x - \overline{x} $ $(4) = (2) \times (3)$
(1)	(2)	(3)	$(4) = (2) \times (3)$
1	5	2.88	14.40
3	8	0.88	7.04
5	9	1.12	10.08
7	2	3.12	6.24
9	1	5.12	5.12
Total	25	_	42.88

Thus, MD about AM is given by

$$\frac{\sum f \left| x - \overline{x} \right|}{N}$$

$$= \frac{42.88}{25}$$

=1.72

Coefficient of MD about its AM =
$$\frac{\text{MD about AM}}{\text{AM}} \times 100$$

= $\frac{1.72}{3.88} \times 100$
= 44.33

Example 14.2.7: Compute the coefficient of mean deviation about median for the following distribution:

Weight in kgs. : 40-50 50-60 60-70 70-80 No. of persons : 8 12 20 10

Solution: We need to compute the median weight in the first stage

Table 14.2.4
Computation of median weight

Weight in kg (CB)	No. of Persons (Cumulative Frequency)
40	0
50	8
60	20
70	40
80	50

Hence,
$$M = l_1 + \left(\frac{\frac{N}{2} - N_l}{N_u - N_l}\right) \times C$$

= $\left[60 + \frac{25 - 20}{40 - 20} \times 10\right] \text{kg.} = 62.50 \text{kg.}$

Table 14.2.5

Computation of mean deviation of weight about median

weight (kgs.) (1)	mid-value (x _i) kgs. (2)	No. of persons (f _i) (3)	x _i -Me (kgs.) (4)	$f_{i} x_{i} - Me $ $(kgs.)$ $(5)=(3)\times(4)$
40-50	45	8	17.50	140
50–60	55	12	7.50	90
60–70	65	20	2.50	50
70–80	75	10	12.50	125
Total	-	50	-	405

Mean deviation about median =
$$\frac{\sum f_i \left| x_i - Median \right|}{N}$$
 =
$$\frac{405}{50} \text{kg}.$$

Coefficient of mean deviation about median
$$=\frac{\text{Mean deviation about median}}{\text{Median}} \times 100$$

 $= 8.10 \,\mathrm{kg}.$

$$= \frac{8.10}{62.50} \times 100$$
$$= 12.96$$

Example 14.2.8: If x and y are related as 4x+3y+11=0 and mean deviation of x is 5.40, what is the mean deviation of y?

Solution: Since 4x + 3y + 11 = 0

Therefore,
$$y = \left(\frac{-11}{3}\right) + \left(\frac{-4}{3}\right)x$$

Hence MD of y=
$$|b| \times MD$$
 of x

$$= \frac{4}{3} \times 5.40$$
$$= 7.20$$

14.2.4 STANDARD DEVIATION

Although mean deviation is an improvement over range so far as a measure of dispersion is concerned, mean deviation is difficult to compute and further more, it cannot be treated mathematically. The best measure of dispersion is, usually, standard deviation which does not possess the demerits of range and mean deviation.

Standard deviation for a given set of observations is defined as the root mean square deviation when the deviations are taken from the AM of the observations. If a variable x assumes n values $x_1, x_2, x_3, \dots, x_n$ then its standard deviation(s) is given by

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n}}$$
 (14.2.5)

For a grouped frequency distribution, the standard deviation is given by

$$s = \sqrt{\frac{\sum f_{i}(x_{i} - \overline{x})^{2}}{N}}$$
 (14.2.6)

(14.2.5) and (14.2.6) can be simplified to the following forms

$$s = \sqrt{\frac{\sum x_i^2}{n} - \overline{x}^2} \text{ for unclassified data}$$

$$= \sqrt{\frac{\sum f_i x_i^2}{N} - \overline{x}^2} \text{ for a grouped frequency distribution.} \qquad ... (14.2.7)$$

Sometimes the square of standard deviation, known as variance, is regarded as a measure of dispersion. We have, then,

Variance =
$$s^2 = \frac{\sum (x_i - \overline{x})^2}{n}$$
 for unclassified data
$$= \frac{\sum f_i (x_i - \overline{x})^2}{N}$$
 for a grouped frequency distribution(14.2.8)

A relative measure of dispersion using standard deviation is given by coefficient of variation (cv) which is defined as the ratio of standard deviation to the corresponding arithmetic mean, expressed as a percentage.

Coefficient of Variation (CV) =
$$\frac{SD}{AM} \times 100$$
(14..2.9)

Example 14.2.9: Find the standard deviation and the coefficient of variation for the following numbers: 5, 8, 9, 2, 6

Solution: We present the computation in the following table.

Table 14.2.6 Computation of standard deviation

X _i	X_i^2
5	25
8	64
9	81
2 6	4
6	36
30	$\sum x_i^2 = 210$

Applying (14.2.7), we get the standard deviation as

$$s = \sqrt{\frac{\sum x_i^2}{n} - \overline{x}^2}$$

$$= \sqrt{\frac{210}{5} - \left(\frac{30}{5}\right)^2} \qquad \left(\sin \operatorname{ce} \overline{x} = \frac{\sum x_i}{n}\right)$$

$$= \sqrt{42 - 36}$$

$$= \sqrt{6}$$

$$= 2.45$$

The coefficient of variation is

$$CV = 100 \times \frac{SD}{AM}$$
$$= 100 \times \frac{2.45}{6}$$
$$= 40.83$$

Example 14.2.10: Show that for any two numbers a and b, standard deviation is given

by
$$\frac{|a-b|}{2}$$
.

Solution: For two numbers a and b, AM is given by $\overline{x} = \frac{a+b}{2}$

The variance is

$$s^{2} = \frac{\sum (x_{i} - \overline{x})^{2}}{2}$$

$$= \frac{\left(a - \frac{a+b}{2}\right)^{2} + \left(b - \frac{a+b}{2}\right)^{2}}{2}$$

$$= \frac{\frac{(a-b)^{2}}{4} + \frac{(a-b)^{2}}{4}}{2}$$

$$= \frac{(a-b)^{2}}{4}$$

$$\Rightarrow s = \frac{|a-b|}{2}$$

(The absolute sign is taken, as SD cannot be negative).

Example 14.2.11: Prove that for the first n natural numbers, SD is $\sqrt{\frac{n^2-1}{12}}$.

Solution: for the first n natural numbers AM is given by

$$\overline{x} = \frac{1+2+3+\dots+n}{n}$$

$$= \frac{n(n+1)}{2n}$$

$$= \frac{n+1}{2}$$

$$\therefore SD = \sqrt{\frac{\sum x_i^2}{n} - \overline{x}^2}$$

$$= \sqrt{\frac{1^2+2^2+3^2\dots+n^2}{n} - \left(\frac{n+1}{2}\right)^2}$$

$$= \sqrt{\frac{n(n+1)(2n+1)}{6n} - \frac{(n+1)^2}{4}}$$

$$= \sqrt{\frac{(n+1)(4n+2-3n-3)}{12}} = \sqrt{\frac{n^2-1}{12}}$$

Thus, SD of first n natural numbers is SD = $\sqrt{\frac{n^2 - 1}{12}}$

We consider the following formula for computing standard deviation from grouped frequency distribution with a view to saving time and computational labour:

$$S = \sqrt{\frac{\sum f_{i} d_{i}^{2}}{N} - \left(\frac{\sum f_{i} d_{i}}{N}\right)^{2}}$$
 (14.2.10)

Where $d_i = \frac{x_i - A}{C}$

Example 14.2.12: Find the SD of the following distribution:

Weight (kgs.)	:	50-52	52-54	54-56	56-58	58-60
No. of Students	:	17	35	28	15	5

Solution:

Table 14.2.7 Computation of SD

Weight (kgs.) (1)	No. of Students (f_i) (2)	Mid-value (x _i) (3)	$d_{i}=x_{i}-55$ 2 (4)	$f_i d_i$ (5)=(2)×(4)	$ \begin{array}{c} f_i d_i^2 \\ (6) = (5) \times (4) \end{array} $
50-52	17	51	-2	-34	68
52-54	35	53	- 1	- 35	35
54-56	28	55	0	0	0
56-58	15	57	1	15	15
58-60	5	59	2	10	20
Total	100	_	_	- 44	138

Applying (14.2.7), we get the SD of weight as

$$\begin{split} &=\sqrt{\frac{\sum f_i d_i^2}{N}} - \left(\frac{\sum f_i d_i}{N}\right)^2 \times C \\ &=\sqrt{\frac{138}{100}} - \frac{(-44)^2}{100} \times 2 \text{kgs.} \end{split}$$

$$= \sqrt{1.38 - 0.1936} \times 2 \text{ kgs.}$$

= 2.18 kgs.

Properties of standard deviation

- I. If all the observations assumed by a variable are constant i.e. equal, then the SD is zero. This means that if all the values taken by a variable x is k, say, then s = 0. This result applies to range as well as mean deviation.
- II. SD remains unaffected due to a change of origin but is affected in the same ratio due to a change of scale i.e., if there are two variables x and y related as y = a+bx for any two constants a and b, then SD of y is given by

$$s_{v} = |b| s_{x}$$
(14.2.11)

III. If there are two groups containing n_1 and n_2 observations, $\overline{\chi}_1$ and $\overline{\chi}_2$ as respective AM's, s_1 and s_2 as respective SD's, then the combined SD is given by

$$s = \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2 + n_1 d_1^2 + n_2 d_2^2}{n_1 + n_2}}$$
 (14.2.12)

where,
$$d_1 = \overline{x}_1 - \overline{x}$$

 $d_2 = \overline{x}_2 - \overline{x}$

$$\overline{x} = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2}$$
 = combined AM

This result can be extended to more than 2 groups. For $x \ge 2$ groups, we have

$$s = \sqrt{\frac{\sum n_{i} s_{i}^{2} + \sum n_{i} d_{i}^{2}}{\sum n_{i}}}$$
 (14.2.13)

With
$$d_i = x_i - \overline{x}$$

and
$$\overline{x} = \frac{\sum n_i \overline{x}_i}{\sum n_i}$$

Where
$$\bar{x}_1 = \bar{x}_2$$
 (14.2.13) is reduced to

$$s = \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2}}$$

Example 14.2.13: If AM and coefficient of variation of x are 10 and 40 respectively, what is the variance of (15-2x)?

Solution: let y = 15 - 2x

Then applying (14.2.4), we get,
$$s_y = 2 \times s_x$$
(1)

As given $cv_x = coefficient$ of variation of x = 40 and $\overline{x} = 10$

This
$$cv_x = \frac{s_x}{x} \times 100$$

$$\Rightarrow$$
 $40 = \frac{S_x}{10} \times 100$

$$\Rightarrow$$
 $S_x = 4$

From (1),
$$S_v = 2 \times 4 = 8$$

Therefore, variance of
$$(15-2x) = S_y^2 = 64$$

Example 14.2.14: Compute the SD of 9, 5, 8, 6, 2.

Without any more computation, obtain the SD of

Solution:

Table 14.2.7 Computation of SD

X _i	X _i ²
9	81
5	25 64
8	64
6	36
2	4
30	210

The SD of the original set of observations is given by

$$s = \sqrt{\frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2}$$
$$= \sqrt{\frac{210}{5} - \left(\frac{30}{5}\right)^2}$$
$$= \sqrt{42 - 36}$$
$$= \sqrt{6}$$
$$= 2.45$$

If we denote the original observations by x and the observations of sample I by y, then we have

$$y = -10 + x$$

$$y = (-10) + (1) x$$

$$\therefore S_y = |1| \times S_x$$

$$= 1 \times 2.45$$

$$= 2.45$$

In case of sample II, x and y are related as

$$Y = 10x$$
$$= 0 + (15)x$$

$$\therefore s_y = |10| \times s_x$$

$$= 10 \times 2.45$$

$$= 24.50$$
And lastly, $y = (5) + (2)x$

$$\Rightarrow s_y = 2 \times 2.45$$

$$= 4.90$$

Example 14.2.15: For a group of 60 boy students, the mean and SD of stats. marks are 45 and 2 respectively. The same figures for a group of 40 girl students are 55 and 3 respectively. What is the mean and SD of marks if the two groups are pooled together?

Solution: As given $n_1 = 60$, $\overline{x}_1 = 45$, $s_1 = 2$ $n_2 = 40$, $\overline{x}_2 = 55$, $s_2 = 3$ Thus the combined mean is given by

$$\overline{x} = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2}$$

$$= \frac{60 \times 45 + 40 \times 55}{60 + 40}$$

$$= 49$$
Thus
$$d_1 = \overline{x}_1 - \overline{x} = 45 - 49 = -4$$

$$d_2 = \overline{x}_2 - \overline{x} = 55 - 49 = 6$$

Applying (14.2.13), we get the combined SD as

$$s = \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2 + n_1 d_1^2 + n_2 d_2^2}{n_1 + n_2}}$$

$$s = \sqrt{\frac{60 \times 2^2 + 40 \times 3^2 + 60 \times (-4)^2 + 40 \times 6^2}{60 + 40}}$$

$$= \sqrt{30}$$

$$= 5.48$$

Example 14.2.16: The mean and standard deviation of the salaries of the two factories are provided below:

Factory	No. of Employees	Mean Salary	SD of Salary
A	30	₹ 4800	₹ 10
В	20	₹ 5000	₹ 12

- i) Find the combined mean salary and standard deviation of salary.
- ii) Examine which factory has more consistent structure so far as satisfying its employees are concerned.

Solution: Here we are given

$$n_1 = 30$$
, $\bar{x}_1 = ₹ 4800$, $s_1 = ₹ 10$,
 $n_2 = 20$, $\bar{x}_2 = ₹ 5000$, $s_2 = ₹ 12$

i)
$$\frac{30 \times ₹ 4800 + 20 \times ₹ 5000}{30 + 20} = ₹ 4800$$

$$d_1 = \overline{x}_1 - \overline{x} = ₹ 4,800 - ₹ 4880 = - ₹ 80$$

$$d_2 = \overline{x}_2 - \overline{x} = ₹ 5,000 - ₹ 4880 = ₹ 120$$

hence, the combined SD in rupees is given by

$$s = \sqrt{\frac{30 \times 10^2 + 20 \times 12^2 + 30 \times (-80)^2 + 20 \times 120^2}{30 + 20}}$$
$$= \sqrt{9717.60}$$
$$= 98.58$$

thus the combined mean salary and the combined standard deviation of salary are $\stackrel{?}{\stackrel{\checkmark}}$ 4880 and $\stackrel{?}{\stackrel{\checkmark}}$ 98.58 respectively.

ii) In order to find the more consistent structure, we compare the coefficients of variation of the two factories. Letting $CV_A = 100 \times \frac{S_A}{\overline{X}_A}$ and $CV_B = 100 \times \frac{S_B}{\overline{X}_B}$

We would say factory A is more consistent

if $CV_A < CV_B$. Otherwise factory B would be more consistent.

Now
$$CV_A = 100 \times \frac{s_A}{\overline{x}} = 100 \times \frac{s_1}{\overline{x}} = \frac{100 \times 10}{4800} = 0.21$$

and
$$CV_B = 100 \times \frac{S_B}{\overline{X}_B} = 100 \times \frac{S_2}{\overline{X}_2} = \frac{100 \times 12}{5000} = 0.24$$

Thus we conclude that factory A has more consistent structure.

Example 14.2.17: A student computes the AM and SD for a set of 100 observations as 50 and 5 respectively. Later on, she discovers that she has made a mistake in taking one observation as 60 instead of 50. What would be the correct mean and SD if

- i) The wrong observation is left out?
- ii) The wrong observation is replaced by the correct observation?

Solution: As given, n = 100, $\bar{x} = 50$, S = 5

Wrong observation = 60, correct observation = 50

$$\bar{x} = \frac{\sum x_i}{n}$$

$$\Rightarrow \sum x_i = n\bar{x} = 100 \times 50 = 5000$$
and
$$s^2 = \frac{\sum x_i^2}{n} - \bar{x}^2$$

$$\Rightarrow \sum x_i^2 = n(\bar{x}^2 + s^2) = 100(50^2 + 5^2) = 252500$$

i) Sum of the 99 observations = 5000 - 60 = 4940

AM after leaving the wrong observation = 4940/99 = 49.90

Sum of squares of the observation after leaving the wrong observation

$$= 252500 - 60^2 = 248900$$

Variance of the 99 observations = $248900/99 - (49.90)^2$

$$= 2514.14 - 2490.01$$

$$= 24.13$$

$$\therefore$$
 SD of 99 observations = 4.91

Sum of the 100 observations after replacing the wrong observation by the correct observation ii) =5000 - 60 + 50 = 4990

$$AM = \frac{4990}{100} = 49.90$$

Corrected sum of squares =
$$252500 + 50^2 - 60^2 = 251400$$

Corrected SD =
$$\sqrt{\frac{251400}{100} - (49.90)^2}$$

= $\sqrt{23.94} = 4.90$

14.2.5 QUARTILE DEVIATION

Another measure of dispersion is provided by quartile deviation or semi-inter-quartile range which is given by

$$Q_{d} = \frac{Q_{3} - Q_{1}}{2} \qquad (14.2.14)$$

A relative measure of dispersion using quartiles is given by coefficient of quartile deviation which is

Coefficient of quartile deviation =
$$\frac{Q_3 - Q_1}{Q_3 + Q_1} \times 100$$
 (14.2.15)

Quartile deviation provides the best measure of dispersion for open-end classification. It is also less affected due to extreme observations or sampling fluctuations. Like other measures of dispersion, quartile deviation remains unaffected due to a change of origin but is affected in the same ratio due to change in scale.

Example 14.2.18 : Following are the marks of the 10 students : 56, 48, 65, 35, 42, 75, 82, 60, 55, 50. Find quartile deviation and also its coefficient.

Solution:

After arranging the marks in an ascending order of magnitude, we get 35, 42, 48, 50, 55, 56, 60, 65, 75, 82

First quartile $(Q_1) = \frac{(n+1)}{4}$ th observation

$$=\frac{(10+1)}{4}$$
th observation

= 2.75th observation

= 2^{nd} observation + $0.75 \times$ difference between the third and the 2^{nd} observation.

$$=42 + 0.75 \times (48 - 42)$$

$$=46.50$$

Third quartile $(Q_3) = \frac{3(n+1)}{4}$ th observation

$$=65 + 0.25 \times 10$$

$$=67.50$$

Thus applying (14.2.14), we get the quartile deviation as

$$\frac{Q_3 - Q_1}{2} = \frac{67.50 - 46.50}{2} = 10.50$$

Also, using (14.2.15), the coefficient of quartile deviation

$$= \frac{Q_3 - Q_1}{Q_3 + Q_1} \times 100$$

$$= \frac{67.50 - 46.50}{67.50 + 46.50} \times 100$$

$$= 18.42$$

Example 14.2.19 : If the quartile deviation of x is 6 and 3x + 6y = 20, what is the quartile deviation of y?

Solution:
$$3x + 6y = 20$$

$$\Rightarrow$$
 $y = \left(\frac{20}{6}\right) + \left(\frac{-3}{6}\right)x$

Therefore, quartile deviation of $y = \frac{|-3|}{6} \times \text{quartile deviation of } x$

$$= \frac{1}{2} \times 6$$
$$= 3$$

Example 14.2.20: Find an appropriate measures of dispersion from the following data:

Daily wages (₹)	:	upto 20	20-40	40-60	60-80	80-100
No. of workers (₹)	:	5	11	14	7	3

Solution: Since this is an open-end classification, the appropriate measure of dispersion would be quartile deviation as quartile deviation does not taken into account the first twenty five percent and the last twenty five per cent of the observations.

Table 14.2.8 Computation of Quartile

Daily wages in (₹) (Class boundary)	No. of workers (less than cumulative frequency)
a	0
20	5
40	16
60	30
80	37
100	40

Here a denotes the first Class Boundary

Q₁ = ₹
$$\left[20 + \frac{10 - 5}{16 - 5} \times 20\right]$$
 = ₹ 29.09
Q₃ = ₹ $\left[40 + \frac{30 - 16}{30 - 16} \times 20\right]$ = ₹ 60

$$Q_3 = 760$$

Thus quartile deviation of wages is given by

$$\frac{Q_3 - Q_1}{2}$$

$$= \frac{60 - 29.09}{2}$$

$$= 15.46$$

Example 14.2.21: The mean and variance of 5 observations are 4.80 and 6.16 respectively. If three of the observations are 2, 3 and 6, what are the remaining observations?

Solution: Let the remaining two observations be a and b, then as given

From (1), we get a = 13 - b(3)

Eliminating a from (2) and (3), we get

$$(13 - b)^{2} + b^{2} = 97$$
⇒
$$169 - 26b + 2b^{2} = 97$$
⇒
$$b^{2} - 13b + 36 = 0$$
⇒
$$(b-4)(b-9) = 0$$
⇒
$$b = 4 \text{ or } 9$$
From (3), $a = 9 \text{ or } 4$

Thus the remaining observations are 4 and 9.

Example 14.2.22: After shift of origin and change of scale, a frequency distribution of a continuous variable with equal class length takes the following form of the changed variable (d):

d : -2 -1 0 1 2 Frequency : 17 35 28 15 5

If the mean and standard deviation of the original frequency distribution are 54.12 and 2.1784 respectively, find the original frequency distribution.

Solution: We need find out the origin A and scale C from the given conditions.

Since
$$d_i = \frac{x_i - A}{C}$$

 $\Rightarrow x_i = A + Cd_i$

Once A and C are known, the mid-values x_i 's would be known. Finally, we convert the mid-values to the corresponding class boundaries by using the formula:

$$LCB = x_i - C/2$$
and
$$UCB = x_i + C/2$$

On the basis of the given data, we find that

$$\Sigma f_i d_i = -44$$
, $\Sigma f_i d_i^2 = 138$ and $N = 100$

Hence s =
$$\sqrt{\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i}{N}\right)^2} \times C$$

$$\Rightarrow \qquad 2.1784 = \sqrt{\frac{138}{100} - \left(\frac{-44}{100}\right)^2} \times C$$

$$\Rightarrow$$
 2.1784 = $\sqrt{1.38 - 0.1936} \times C$

$$\Rightarrow$$
 2.1784 = 1.0892 × C

$$\Rightarrow$$
 C = 2

Further,
$$\overline{x} = A + \frac{\sum f_i d_i}{N} \times C$$

$$\Rightarrow 54.12 = A + \frac{-44}{100} \times 2$$

$$\Rightarrow$$
 54.12 = A - 0.88

$$\Rightarrow$$
 A = 55

Thus
$$x_i = A + Cd_i$$

$$\Rightarrow$$
 $x_i = 55 + 2d_i$

Table 14.2.9

Computation of the Original Frequency Distribution

		x _i =	Class interval
d_{i}	f _i	55 + 2d _i	$x_i \pm \frac{C}{2}$
-2	17	51	50-52
- 1	35	53	52-54
0	28	55	54-56
1	15	57	56-58
2	5	59	58-60

Example 14.2.23: Compute coefficient of variation from the following data:

Age : under 10 under 20 under 30 under 40 under 50 under 60

No. of persons

Dying : 10 18 30 45 60 80

Solution: What is given in this problem is less than cumulative frequency distribution. We need first convert it to a frequency distribution and then compute the coefficient of variation.

Table 14.2.10

Computation of coefficient of variation

Age in years class Interval	No. of persons dying (f _i)	Mid-value (x _i)	$\frac{d_i=}{x_i-25}$ $\frac{10}{10}$	$f_i d_i$	f _i d _i ²
0-10	10	5	- 2	-20	40
10-20	18–10= 8	15	- 1	-8	8
20-30	30–18=12	25	0	0	0
30-40	45–30=15	35	1	15	15
40-50	60–45=15	45	2	30	60
50-60	80-60=20	55	3	60	180
Total	80	_	_	77	303

The AM is given by:

$$\bar{x} = A + \frac{\sum f_i d_i}{N} \times C$$

$$= \left(25 + \frac{77}{80} \times 10\right) \text{ years}$$

$$= 34.63 \text{ years}$$

The standard deviation is

$$s = \sqrt{\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i}{N}\right)^2} \times C$$
$$= \sqrt{\frac{303}{80} - \left(\frac{77}{80}\right)^2} \times 10 \text{ years}$$

=
$$\sqrt{3.79 - 0.93} \times 10$$
 years
= 16.91 years

Thus the coefficient of variation is given by

$$CV = \frac{S}{X} \times 100$$
$$= \frac{16.91}{34.63} \times 100$$

=48.83

Example 14.2.24: You are given the distribution of wages in two factors A and B

Wages in ₹	:	100-200	200-300	300-400	400-500	500-600	600-700
No. of							
workers in A	:	8	12	17	10	2	1
No. of							
workers in B	:	6	18	25	12	2	2

State in which factory, the wages are more variable.

Solution:

As explained in example 14.2.3, we need compare the coefficient of variation of A(i.e. v_A) and of B (i.e v_B).

If $v_A > v_B$, then the wages of factory A would be more variable. Otherwise, the wages of factory B would be more variable where

$$V_{A} = 100 \times \frac{s_{A}}{\overline{x}_{A}}$$
 and $V_{B} = 100 \times \frac{s_{B}}{\overline{x}_{B}}$

Table 14.2.11

Computation of coefficient of variation of wages of Two Factories A and B

Wages in rupees	Mid-value x	d=	No. of workers of A	of B f _B	f _A d	$f_A d^2$	f _B d	$f_B d^2$
(1)	(2)	(3)	(4)	(5)	$(6)=(3)\times(4)$	$(7)=(3)\times(6)$	$(8)=(3)\times(5)$	$(9)=(3)\times(8)$
100-200	150	- 2	8	6	- 16	32	-12	24
200-300	250	- 1	12	18	- 12	12	-18	18
300-400	350	0	17	25	0	0	0	0
400-500	450	1	10	12	10	10	12	12
500-600	550	2	2	2	4	8	4	8
600-700	650	3	1	2	3	9	6	18
Total	_	_	50	65	- 11	71	-8	80

For Factory A

$$\overline{x}_A = \sqrt[4]{350 + \frac{-11}{50}} \times 100 = \sqrt[4]{328}$$

$$S_A = \sqrt[7]{\frac{71}{50} - \left(\frac{-11}{50}\right)^2} \times 100 = 117.12$$

$$\therefore V_{A} = \frac{S_{A}}{\overline{x}_{A}} \times 100 = 35.71$$

For Factory B

$$\overline{x}_{B} = (350 + \frac{-8}{65} \times 100) = 337.69$$

$$S_B = 7 \sqrt{\frac{80}{65} - \left(\frac{-8}{65}\right)^2} \times 100$$

$$\therefore V_B = \frac{110.25}{337.69} \times 100 = 32.65$$

As $V_A > V_B$, the wages for factory A is more variable.

SUMMARY

- Standard deviation is the most widely and commonly used measure of dispersion
- Range is the quickest to compute and as such, has its application in statistical quality control. However, range is based on only two observations and affected too much by the presence of extreme observation(s).
- Mean deviation is rigidly defined, based on all the observations and not much affected by sampling fluctuations. However, mean deviation is difficult to comprehend and its computation is also time consuming and laborious. Furthermore, unlike SD, mean deviation does not possess mathematical properties.
- Quartile deviation is also rigidly defined, easy to compute and not much affected by sampling fluctuations. The presence of extreme observations has no impact on quartile deviation since quartile deviation is based on the central fifty-percent of the observations. However, quartile deviation is not based on all the observations and it has no desirable mathematical properties. Nevertheless, quartile deviation is the best measure of dispersion for open-end classifications.

EXERCISE — UNIT-II

Set A

Write down the correct answers. Each question carries one mark.

- 1. Which of the following statements is correct?
 - (a) Two distributions may have identical measures of central tendency and dispersion.
 - (b) Two distributions may have the identical measures of central tendency but different measures of dispersion.
 - (c) Two distributions may have the different measures of central tendency but identical measures of dispersion.
 - (d) All the statements (a), (b) and (c).
- 2. Dispersion measures
 - (a) The scatterness of a set of observations
 - (b) The concentration of a set of observations
 - (c) Both (a) and (b)
 - (d) Neither (a) and (b).
- 3. When it comes to comparing two or more distributions we consider
 - (a) Absolute measures of dispersion
- (b) Relative measures of dispersion

(c) Both (a) and (b)

(d) Either (a) or (b).

- 4. Which one is easiest to compute?
 - (a) Relative measures of dispersion
- (b) Absolute measures of dispersion

(c) Both (a) and (b)

- (d) Range
- 5. Which one is an absolute measure of dispersion?
 - (a) Range

(b) Mean Deviation

(c) Standard Deviation

- (d) All these measures
- 6. Which measure of dispersion is most usefull?
 - (a) Standard deviation

(b) Quartile deviation

(c) Mean deviation

- (d) Range
- 7. Which measures of dispersions is not affected by the presence of extreme observations?
 - (a) Range

(b) Mean deviation

(c) Standard deviation

- (d) Quartile deviation
- 8. Which measure of dispersion is based on the absolute deviations only?
 - (a) Standard deviation

(b) Mean deviation

(c) Quartile deviation

(d) Range

9.	Which measure is based on only the cer	ntral fifty percent of the observations?			
	(a) Standard deviation	(b) Quartile deviation			
	(c) Mean deviation	(d) All these measures			
10.	Which measure of dispersion is based o	n all the observations?			
	(a) Mean deviation	(b) Standard deviation			
	(c) Quartile deviation	(d) (a) and (b) but not (c)			
11.	The appropriate measure of dispersion	for open-end classification is			
	(a) Standard deviation	(b) Mean deviation			
	(c) Quartile deviation	(d) All these measures.			
12.	The most commonly used measure of d	ispersion is			
	(a) Range	(b) Standard deviation			
	(c) Coefficient of variation	(d) Quartile deviation.			
13.	Which measure of dispersion has some	desirable mathematical properties?			
	(a) Standard deviation	(b) Mean deviation			
	(c) Quartile deviation	(d) All these measures			
14.	If the profits of a company remains the deviation of profits for these ten months	e same for the last ten months, then the standard s would be?			
	(a) Positive (b) Negative	(c) Zero (d) (a) or (c)			
15.	Which measure of dispersion is consider combining several groups?	red for finding a pooled measure of dispersion after			
	(a) Mean deviation	(b) Standard deviation			
	(c) Quartile deviation	(d) Any of these			
16.	A shift of origin has no impact on				
	(a) Range	(b) Mean deviation			
	(c) Standard deviation	(d) All these and quartile deviation.			
17.	The range of 15, 12, 10, 9, 17, 20 is				
	(a) 5 (b) 12	(c) 13 (d) 11.			
18.	The standard deviation of 10, 16, 10, 16,	10, 10, 16, 16 is			
	(a) 4 (b) 6	(c) 3 (d) 0.			
19.	For any two numbers SD is always				
	(a) Twice the range	(b) Half of the range			
	(c) Square of the range	(d) None of these.			

- 20. If all the observations are increased by 10, then
 - (a) SD would be increased by 10
 - (b) Mean deviation would be increased by 10
 - (c) Quartile deviation would be increased by 10
 - (d) All these three remain unchanged.
- 21. If all the observations are multiplied by 2, then
 - (a) New SD would be also multiplied by 2
 - (b) New SD would be half of the previous SD
 - (c) New SD would be increased by 2
 - (d) New SD would be decreased by 2.

₹ 80, ₹ 65, ₹ 90, ₹ 60, ₹ 75, ₹ 70, ₹ 72, ₹ 85.

Set B

Write down the correct answers. Each question carries two marks.

1.	What is the coefficient of range	for the following v	wages of 8 workers?
	O	O	O

(a) ₹ 30

(b) ₹ 20

(c) 30

(d) 20

2. If R_x and R_y denote ranges of x and y respectively where x and y are related by 3x+2y+10=0, what would be the relation between x and y?

(a) $R_x = R_y$

(b) $2 R_{x} = 3 R_{y}$

(c) $3 R_{x} = 2 R_{y}$

(d) $R_x = 2 R_y$

3. What is the coefficient of range for the following distribution?

Class Interval:

10-19

20-29

30-39

40-49

50-59

Frequency:

11

25

16

7

3

(a) 22

(b) 50

(c) 72.46

(d) 75.82

4. If the range of x is 2, what would be the range of -3x +50?

(a) 2

(b) 6

(c) -6

(d) 44

5. What is the value of mean deviation about mean for the following numbers? 5, 8, 6, 3, 4.

(a) 5.20

(b) 7.20

(c) 1.44

(d) 2.23

6. What is the value of mean deviation about mean for the following observations? 50, 60, 50, 50, 60, 60, 60, 50, 50, 60, 60, 60, 60, 50.

(a) 5

(b) 7

(c) 35

(d) 10

7. The coefficient of mean deviation about mean for the first 9 natural numbers is

(a) 200/9

(b) 80

(c) 400/9

(d) 50.

8.	If the relation between x and y is $5y-3x = 10$ and the mean deviation about mean for x is 12, then the mean deviation of y about mean is								
	(a) 7.20	(b) 6.80	(c) 20	(d) 18.80.					
9.	If two variables x and y are related by $2x + 3y - 7 = 0$ and the mean and mean deviation about mean of x are 1 and 0.3 respectively, then the coefficient of mean deviation of y about its mean is								
	(a) -5	(b) 12	(c) 50	(d) 4.					
10.	The mean deviation about (a) 1/6	out mode for the numb (b) 1/11	ers 4/11, 6/11, 8/11, (c) 6/11	9/11, 12/11, 8/11 is (d) 5/11.					
11.	What is the standard de	eviation of 5, 5, 9, 9, 9, 1	10, 5, 10, 10?						
	(a) $\sqrt{14}$	(b) $\frac{\sqrt{42}}{3}$	(c) 4.50	(d) 8					
12.	If the mean and SD of x	are a and b respective	ly, then the SD of $\frac{x-a}{h}$	a is					
	(a) -1	(b) 1	(c) ab	(d) a/b.					
13.	What is the coefficient of 53, 52, 61, 60, 64.		O	(1) 20 45					
	(a) 8.09	(b) 18.08	(c) 20.23	(d) 20.45					
14.	If the SD of x is 3, what (a) 36	us the variance of (5–2 (b) 6	(c) 1	(d) 9					
15.	If x and y are related by	$\sqrt{2x+3y+4} = 0$ and SD o	of x is 6, then SD of y is	S					
	(a) 22	(b) 4	(c) $\sqrt{5}$	(d) 9.					
16.	The quartiles of a varia	ble are 45, 52 and 65 res	spectively. Its quartile	e deviation is					
	(a) 10	(b) 20	(c) 25	(d) 8.30.					
17.	If x and y are related as deviation of y is	s $3x+4y = 20$ and the q	uartile deviation of x	is 12, then the quartile					
	(a) 16	(b) 14	(c) 10	(d) 9.					
18.	If the SD of the 1st n na	tural numbers is 2, the	n the value of n must	be					
	(a) 2	(b) 7	(c) 6	(d) 5.					
19.	If x and y are related by respectively, then the co	•		n to be 5 and 10					
	(a) 25	(b) 30	(c) 40	(d) 20.					

20. The mean and SD for a, b and 2 are 3 and $\sqrt{3}$ respectively, The value of ab would be (a) 5 (b) 6(c) 11 (d) 3. Set C Write down the correct answer. Each question carries 5 marks. What is the mean deviation about mean for the following distribution? Variable: 15 20 25 30 10 3 4 6 5 3 2 Frequency: (a) 6.00 (b) 5.93 (c) 6.07(d) 7.20What is the mean deviation about median for the following data? X: 35 7 9 13 11 15 F: 2 8 9 7 16 14 4 (a) 2.50 (b) 2.46 (c) 2.43(d) 2.37 What is the coefficient of mean deviation for the following distribution of heights? Take deviation from AM. Height in inches: 60-62 63-65 66-68 69-71 72-74 28 3 No. of students: 5 22 17 (d) 2.48 inches (a) 2.31 inches (b) 3.45 inches (c) 3.82 inches The mean deviation of weights about median for the following data: 181-190 Weight (lb): 131-140 141-150 151-160 161-170 171-180 8 5 No. of persons: 13 15 6 Is given by (a) 10.97 (d) 11.45. (b) 8.23 (c) 9.63What is the standard deviation from the following data relating to the age distribution of 200 persons? 20 30 40 50 60 70 80 Age (year) : 28 31 39 23 No. of people: 13 46 20 (a) 15.29 (b) 16.87 (c) 18.00 (d) 17.52 What is the coefficient of variation for the following distribution of wages?

Which of the following companies A and B is more consistent so far as the payment of

50 - 60

21

(c) 26.93

60 - 70

15

70 - 80

13

(d) 20.82

80 - 90

6

40 - 50

28

30 - 40

17

(b) 14.73

Daily Wages (₹):

No. of workers

(a) ₹ 14.73

	Dividend p	oaid b	by A:	5	9	6		12	15	10		8	10
	Dividend p	oaid b	by B:	4	8	7		15	18	9		6	6
	(a) A			(b) B			(c) Bo	oth (a) an	d (b)	(d) Ne	ithe	er (a) n	or (b)
	The mean a observation comprising	ns ha	ve me	an and S						1	,		
	(a) 16			(b) 25			(c) 4			(d) 2			
	If two sam respectivel											s 16 a	nd 25
	(a) 5.00			(b) 5.0	6		(c) 5.	23		(d) 5.3	5		
	The mean a by a CA stu value of SI	ıdent	who to	ook one o	f the o							_	-
	(a) 4.90			(b) 5.0			(c) 4.			(d) 4.8			
	The value wages	of ap	propr	iate mea	sure o	of dispers	sion fo	or the fol	lowing	g distril	buti	ion of	daily
	Wages (₹):		Bel	low 30	30-39	9 40	-49	50-59	(60-79		Above	e 80
	No. of wor	kers	Į	5	7	1	18	32		28		10	
	is given by												
	(a) ₹ 11.03			(b) ₹ 1	0.50		(c) 11	.68		(d) ₹ 1	1.68	3.	
UN	IT-II: AN	SWE	RS										
Set	A												
1.	(d)	2.	(a)	3.	(b)	4.	(d)	5.	(d)		6.	(a)	
7.	(d)	8.	(b)	9.	(b)	10.	(d)	11.	(c)		12.	(b)	
13.	(a)	14.	(c)	15.	(b)	16.	(d)	17.	(d)		18.	(c)	
	(b)	20.	(d)	21.	(a)								
Set													
	(d)	2.	(c)	3.	(c)	4.		5.	(c)			(a)	
7.	, ,	8.	(a)	9.	(b)	10.	, ,	11.	(b)			(b)	
13.	` '	14.	(a)	15.	(b)	16.	(a)	17.	(d)		18.	(b)	
	(c)	20.	(c)										
Set													
	(c)	2.	(d)	3.	(a)	4.	, ,	5.	(b)		6.	(c)	
7.	(a)	8.	(c)	9.	(b)	10.	(b)	11.	(a)				

ADDITIONAL QUESTION BANK

1.	The number of measures of central tendency is									
	(a) two	(b) three	(c) four	(d) five						
2.	The words "mean" or "average" only refer to									
	(a) A.M	(b) G.M	(c) H.M	(d) none						
3.	— is the most stable of all the measures of central tendency.									
	(a) G.M	(b) H.M	(c) A.M	(d) none.						
4.	Mean is of ——— ty	pes.								
	(a) 3	(b) 4	(c) 8	(d) 5						
5.	Weighted A.M is relate	ed to								
	(a) G.M	(b) frequency	(c) H.M	(d) none.						
6.	Frequencies are also ca	lled as weights.								
	(a) True	(b) false	(c) both	(d) none						
7.	The algebraic sum of deviations of observations from their A.M is									
	(a) 2	(b) -1	(c) 1	(d) 0						
8.	G.M of a set of n observations is the ——— root of their product.									
	(a) n/2 th	(b) (n+1)th	(c) nth	(d) (n -1)th						
9.	The algebraic sum of deviations of 8, 1, 6 from the A.M viz.5 is									
	(a) -1	(b) 0	(c) 1	(d) none						
10.	G.M of 8, 4,2 is									
	(a) 4	(b) 2	(c) 8	(d) none						
11.	———— is the reciprocal of the A.M of reciprocal of observations.									
	(a) H.M	(b) G.M	(c) both	(d) none						
12.	A.M is never less than G.M									
	(a) True	(b) false	(c) both	(d) none						
13.	G.M is less than H.M									
	(a) true	(b) false	(c) both	(d) none						
14.	The value of the middle	emost item when the	y are arranged in order of	f magnitude is called						
	(a) standard deviation	(b) mean	(c) mode	(d) median						
15.	Median is unaffected b	y extreme values.								
	(a) true	(b) false	(c) both	(d) none						

16.	Median of 2, 5, 8, 4, 9,	6,71 is							
	(a) 9	(b) 8	(c) 5	(d) 6					
17.	The value which occurs with the maximum frequency is called								
	(a) median	(b) mode	(c) mean	(d) none					
18.	In the formula Mode	$= L_1 + (d_1 X c) / (d_1 +$	d_2)						
	d ₁ is the difference of	frequencies in the mo	odal class & the ———	—— class.					
	(a) preceding	(b) following	(c) both	(d) none					
19.	In the formula Mode	$= L_1 + (d_1 X c) / (d_1 +$	d_2)						
	d ₂ is the difference of	frequencies in the mo	odal class & the ———	class.					
	(a) preceding	(b) succeeding	(c) both	(d) none					
20.	In formula of median	for grouped frequen	cy distribution N is						
	(a) total frequency(c) frequency		(b) frequency density (d) cumulative frequen	ncy					
21.	When all observation	s occur with equal fre	equency ——— does	not exit.					
	(a) median	(b) mode	(c) mean	(d) none					
22.	Mode of the observat	ions 2, 5, 8, 4, 3, 4, 4, 5	5, 2, 4, 4 is						
	(a) 3	(b) 2	(c) 5	(d) 4					
23.	For the observations	5, 3, 6, 3, 5, 10, 7, 2 the	ere are ——— mod	es.					
	(a) 2	(b) 3	(c) 4	(d) 5					
24.	observations.	t of observations is	defined to be their sum,	divided by the no. of					
	(a) H.M	(b) G.M	(c) A.M	(d) none					
25.	Simple average is son	netimes called							
	(a) weighted averag(c) relative average	e	(b) unweighted averag (d) none	ge					
26.	When a frequency dis	stribution is given, the	e frequencies themselves	treated as weights.					
	(a) True	(b) false	(c) both	(d) none					
27.	Each value is conside	red only once for							
	(a) simple average(c) both		(b) weighted average (d) none						
28.	Each value is conside	red as many times as	it occurs for						
	(a) simple average(c) both		(b) weighted average(d) none						

29.	Multiplying the values sum of products by the	2	corresponding weights a	and then dividing the				
	(a) simple average (c) both		(b) weighted average(d) none					
30.	Simple & weighted ave	erage are equal only w	hen all the weights are e	qual.				
	(a) True	(b) false	(c) both	(d) none				
31.	The word "average" u	sed in "simple averag	ge" and "weighted averag	ge" generally refers to				
	(a) median	(b) mode	(c) $A.M$, $G.M$ or $H.M$	(d) none				
32.	average is obt	tained on dividing the	e total of a set of observat	tions by their number				
	(a) simple	(b) weighted	(c) both	(d) none				
33.	Frequencies are genera	lly used as						
	(a) range	(b) weights	(c) mean	(d) none				
34.	The total of a set of obsethe	ervations is equal to th	ne product of their numbe	er of observations and				
	(a) A.M	(b) G.M	(c) H.M	(d) none				
35.	The total of the deviation	ons of a set of observa	tions from their A.M is a	lways				
	(a) 0	(b) 1	(c) -1	(d) none				
36.	Deviation may be posit	tive or negative or zer	o					
	(a) true	(b) false	(c) both	(d) none				
37.	The sum of the squares of deviations of a set of observations has the smallest value, when the deviations are taken from their							
	(a) A.M	(b) H.M	(c) G.M	(d) none				
38.	For a given set of positi	ive observations H.M	is less than G.M					
	(a) true	(b) false	(c) both	(d) none				
39.	For a given set of positive observations A.M is greater than G.M							
	(a) true	(b) false	(c) both	(d) none				
40.	Calculation of G.M is m	nore difficult than						
	(a) A.M	(b) H.M	(c) median	(d) none				
41.	——— has a limite	ed use						
	(a) A.M	(b) G.M	(c) H.M	(d) (b) and (c)				
42.	A.M of 8, 1, 6 is							
	(a) 5	(b) 6	(c) 4	(d) none				

43.	can be	calculated from a free	quency distribution wi	th open end intervals					
	(a) Median	(b) Mean	(c) Mode	(d) none					
44.	The values of all items are taken into consideration in the calculation of								
	(a) median	(b) mean	(c) mode	(d) none					
45.	The values of extr	eme items do not influ	uence the average in ca	se of					
	(a) median	(b) mean	(c) mode	(d) none					
46.		vith a single peak and ne distribution in case		the right, it is closer to the					
	(a) mean	(b) median	(c) both	(d) none					
47.	If the variables $x \& $ then $\overline{z} = a \overline{x} + b$	z are so related that	z = ax + b for each $x = x$	κ_{i} where a & b are constants,					
	(a) true	(b) false	(c) both	(d) none					
48.	G.M is defined on	G.M is defined only when							
	(a) all observations have the same sign and none is zero								
	(b) all observations have the different sign and none is zero								
	(c) all observations have the same sign and one is zero								
	(d) all observation	ns have the different s	sign and one is zero						
49.	——— is useful	in averaging ratios, ra	ates and percentages.						
	(a) A.M	(b) G.M	(c) H.M	(d) Both (b) and (c)					
50.	G.M is useful in construction of index number.								
	(a) true	(b) false	(c) both	(d) none					
51.	More laborious numerical calculations involves in G.M than A.M								
	(a) True	(b) false	(c) both	(d) none					
52.	H.M is defined wh	nen no observation is							
	(a) 3	(b) 2	(c) 1	(d) 0					
53.	When all values o	ccur with equal freque	ency, there is no						
	(a) mode	(b) mean	(c) median	(d) none					
54.	cannot b	e treated algebraically	7						
	(a) mode	(b) mean	(c) median	(d) Both (a) and (c)					
55.	For the calculation distribution.	n of ———, the	data must be arranged	in the form of a frequency					
	(a) median	(b) mode	(c) mean	(d) none					

56.	——— is equal to the value corresponding to cumulative frequency				
	(a)	mode	(b) mean	(c) median	(d) none
57.	is the value of the variable corresponding to the highest frequency				
	(a)	mode	(b) mean	(c) median	(d) none
58.	The	e class in which mo	de belongs is known a	as	
	(a)	median class	(b) mean class	(c) modal class	(d) none
59.	The formula of mode is applicable if classes are of ——— width.				
	(a)	equal	(b) unequal	(c) both	(d) none
60.	For	calculation of ——	— we have to constru	ıct cumulative frequenc	y distribution
	(a)	mode	(b) median	(c) mean	(d) none
61.	For calculation of ——— we have to construct a grouped frequency distribution				
	(a)	median	(b) mode	(c) mean	(d) none
62.	Relation between mean, median & mode is				
	(a) mean - mode = 2 (mean - median)(c) mean - median = 2 (mean - mode)			(b) mean - median = 3 (mean - mode)(d) mean - mode = 3 (mean - median)	
63.	When the distribution is symmetrical, mean, median and mode				
	(a)	coincide	(b) do not coincide	(c) both	(d) none
64.	Mean, median & mode are equal for the				
	(a) Binomial distribution(c) both		(b) Normal distribution(d) none		
65.	In most frequency distributions, it has been observed that the three measures of central tendency viz. mean, median & mode, obey the approximate relation, provided the distribution is				
	(a)	very skew	(b) not very skew	(c) both	(d) none
66.	———— divides the total number of observations into two equal parts.				
	(a)	mode	(b) mean	(c) median	(d) none
67.	Measures which are used to divide or partition the observations into a fixed number of parts are collectively known as				
	(a)	partition values	(b) quartiles	(c) both	(d) none
68.	The middle most value of a set of observations is				
	(a)	median	(b) mode	(c) mean	(d) none
69.	The number of observations smaller than ——— is the same as the number larger than it.				
	(a)	median	(b) mode	(c) mean	(d) none

^{*} Question no. 64 is based on theoretical distribution.

70.	0. ——— is the value of the variable corresponding to cumulative frequency N $/2$								
	(a) 1	mode	(b) mean	(c) median	(d) none				
71.		——— divide	the total no. observat	tions into 4 equal parts.					
	(a) 1	median	(b) deciles	(c) quartiles	(d) percentiles				
72.		——— quartil	e is known as Upper	quartile					
	(a) l	First	(b) Second	(c) Third	(d) none				
73.	Lov	ver quartile is							
	(a) f	first quartile	(b) second quartile	(c) upper quartile	(d) none				
74.		number of observa er and middle quar		ver quartile is the same as	the no. lying between				
	(a)	true	(b) false	(c) both	(d) none				
75.		—— are used for n	neasuring central tend	dency, dispersion & skew	rness.				
	(a)	Median	(b) Deciles	(c) Percentiles	(d) Quartiles.				
76.	The	second quartile is l	known as						
	(a)	median	(b) lower quartile	(c) upper quartile	(d) none				
77.	The	The lower & upper quartiles are used to define							
		standard deviation both	ı	(b) quartile deviation (d) none					
78.	Thr	ee quartiles are use	d in						
		Pearson's formula ooth		(b) Bowley's formula (d) none					
79.	Less	s than First quartile	, the frequency is equ	al to					
	(a) I	N /4	(b) $3N / 4$	(c) N /2	(d) none				
80.	Betv	ween first & second	quartile, the frequence	cy is equal to					
	(a) 3	3N/4	(b) N /2	(c) N /4	(d) none				
81.	Betv	ween second & upp	er quartile, the freque	ency is equal to					
	(a)	3N/4	(b) N /4	(c) N /2	(d) none				
82.	Abo	ove upper quartile,	the frequency is equal	l to					
	(a) I	N /4	(b) N /2	(c) $3N/4$	(d) none				
83.	Cor	responding to first	quartile, the cumulati	ve frequency is					
	(a) I	N /2	(b) N / 4	(c) $3N/4$	(d) none				

 $^{^{\}star}$ Question no. 78 is based on skewness, which is not in syllabus.

84.	Corresponding to seco	nd quartile, the cumu	llative frequency is	
	(a) N/4	(b) $2 N/4$	(c) $3N/4$	(d) none
85.	Corresponding to upp	er quartile, the cumul	ative frequency is	
	(a) 3N/4	(b) $N/4$	(c) $2N/4$	(d) none
86.	The values which divi	de the total number o	f observations into 10 equ	ıal parts are
	(a) quartiles	(b) percentiles	(c) deciles	(d) none
87.	There are ————	deciles.		
	(a) 7	(b) 8	(c) 9	(d) 10
88.	Corresponding to first	decile, the cumulativ	e frequency is	
	(a) $N/10$	(b) $2N/10$	(c) 9N/10	(d) none
89.	Fifth decile is equal to			
	(a) mode	(b) median	(c) mean	(d) none
90.	The values which divi	de the total number o	f observations into 100 ec	ual parts is
	(a) percentiles	(b) quartiles	(c) deciles	(d) none
91.	Corresponding to seco	nd decile, the cumula	tive frequency is	
	(a) N/10	(b) $2N/10$	(c) $5N/10$	(d) none
92.	There are ——— per	rcentiles.		
	(a) 100	(b) 98	(c) 97	(d) 99
93.	10 th percentile is equal	to		
	(a) 1 st decile	(b) 10 th decile	(c) 9 th decile	(d) none
94.	50 th percentile is know	n as		
	(a) 50 th decile	(b) 50 th quartile	(c) mode	(d) median
95.	20th percentile is equal	to		
	(a) 19 th decile	(b) 20 th decile	(c) 2 nd decile	(d) none
96.	(3 rd quartile —— 1 st qu	artile)/2 is		
	(a) skewness	(b) median	(c) quartile deviation	(d) none
97.	1st percentile is less that	ın 2 nd percentile.		
	(a) true	(b) false	(c) both	(d) none
98.	25 th percentile is equal	to		
	(a) 1 st quartile	(b) 25 th quartile	(c) 24 th quartile	(d) none
99.	90 th percentile is equal	to		
	(a) 9 th quartile	(b) 90 th decile	(c) 9 th decile	(d) none

100.	1st decile is greater than	2 nd decile		
	(a) True	(b) false	(c) both	(d) none
101.	Quartile deviation is a r	measure of dispersion	ı .	
	(a) true	(b) false	(c) both	(d) none
102.	To define quartile devia	ation we use		
	(a) lower & middle qua (c) upper & middle qua		(b) lower & upper quart (d) none	iles
103.	Calculation of quartiles	, deciles ,percentiles r	nay be obtained graphica	ally from
	(a) Frequency Polygon	(b) Histogram	(c) Ogive	(d) none
104.	7^{th} decile is the abscissa	of that point on the C	Ogive whose ordinate is	
	(a) $7N/10$	(b) 8N /10	(c) 6N /10	(d) none
105.	Rank of median is			
	(a) $(n+1)/2$	(b) $(n+1)/4$	(c) $3(n+1)/4$	(d) none
106.	Rank of 1st quartile is			
	(a) $(n+1)/2$	(b) $(n+1)/4$	(c) $3(n+1)/4$	(d) none
107.	Rank of 3rd quartile is			
	(a) $3(n+1)/4$	(b) $(n+1)/4$	(c) $(n + 1)/2$	(d) none
108.	Rank of k th decile is			
	(a) $(n+1)/2$	(b) $(n+1)/4$	(c) $(n + 1)/10$	(d) $k(n + 1)/10$
109.	Rank of k th percentile	is		
	(a) $(n+1)/100$	(b) $k(n+1)/10$	(c) $k(n + 1)/100$	(d) none
110.	——— is equal to frequency distribution	value corresponding	to cumulative frequency	(N+1)/2 from simple
	(a) Median	(b) 1 st quartile	(c) 3 rd quartile	(d) 4 th quartile
111.	——is equal to the frequency distribution	value corresponding t	to cumulative frequency (N+1)/4 from simple
	(a) Median	(b) 1 st quartile	(c) 3 rd quartile	(d) 1st decile
112.	——— is equal to the simple frequency distrib	-	ng to cumulative frequer	(N + 1)/4 from
	(a) Median	(b) 1st quartile	(c) 3 rd quartile	(d) 1st decile
113.	——— is equal to the simple frequency distrib	<u> </u>	g to cumulative frequenc	k = (N + 1)/10 from
	(a) Median	(b) k th decile	(c) k th percentile	(d) none

114.	——— is equal to the simple frequency distrib	1 \	g to cumulati	ve frequenc	y k(N + 1)/100 from
	(a) k th decile	(b) k th percentile	(c) both		(d) none
115.	For grouped frequency cumulative frequency N		—— is equa	al to the val	ue corresponding to
	(a) median	(b) 1 st quartile	(c) 3 rd quartil	le	(d) none
116.	For grouped frequency cumulative frequency N		——— is equa	al to the val	ue corresponding to
	(a) median	(b) 1st quartile	(c) 3 rd quartil	le	(d) none
117.	For grouped frequency cumulative frequency 3		——— is equa	al to the val	ue corresponding to
	(a) median	(b) 1st quartile	(c) 3 rd quartil	le	(d) none
118.	For grouped frequency cumulative frequency k		—— is equa	al to the val	ue corresponding to
	(a) median	(b) kth percentile	(c) kth decile		(d) none
119.	For grouped frequency cumulative frequency k		—— is equa	al to the val	ue corresponding to
	(a) k th quartile	(b) k th percentile	(c) k^{th} decile		(d) none
120.	In Ogive, abscissa corre	sponding to ordinate	N/2 is		
	(a) median	(b) 1st quartile	(c) 3 rd quarti	le	(d) none
121.	In Ogive, abscissa corre	sponding to ordinate	N/4 is		
	(a) median	(b) 1 st quartile	(c) 3 rd quartil	le	(d) none
122.	In Ogive, abscissa corre	sponding to ordinate	3N/4 is		
	(a) median	(b) 3 rd quartile	(c) 1st quartil	e	(d) none
123.	In Ogive, abscissa corre	sponding to ordinate		is kth deci	le.
	(a) $kN/10$	(b) $kN/100$	(c) $kN/50$		(d) none
124.	In Ogive, abscissa corre	esponding to ordinate	2 ————	– is kth perd	centile.
	(a) $kN/10$	(b) $kN/100$	(c) $kN/50$		(d) none
125.	For 899, 999, 391, 384, 59 Rank of median is	90, 480, 485, 760, 111,	240		
	(a) 2.75	(b) 5.5	(c) 8.25		(d) none
126.	For 333, 999, 888, 777, 60 Rank of 1 st quartile is	66, 555, 444			
	(a) 3	(b) 1	(c) 2		(d) 7

127.	For 333, 999, 888, 777, 10 Rank of 3 rd quartile is	000, 321, 133				
	(a) 7	(b) 4	(c) 5	(d) 6		
128.	Price per kg.(₹): 45 50 3	35; Kgs.Purchased : 10	00 40 60 Total frequency	is		
	(a) 300	(b) 100	(c) 150	(d) 200		
129.	The length of a rod is m by averaging these 10 d	, ,	imes. You are to estimate	e the length of the rod		
	What is the suitable for	m of average in this c	ase?			
	(a) A.M	(b) G.M	(c) H.M	(d) none		
130.			from 10 different marke ets taken together. What			
	(a) A.M	(b) G.M	(c) H.M	(d) none		
131.	31. You are given the population of India for the courses of 1981 & 1991. You are to find the population of India at the middle of the period by averaging these population figure assuming a constant rate of increase of population.					
	What is the suitable for	m of average in this c	ase?			
	(a) A.M	(b) G.M	(c) H.M	(d) none		
132.	——— is least af	fected by sampling fl	uctions.			
	(a) Standard deviation (c) both		(b) Quartile deviation (d) none			
133.	"Root -Mean Square De	eviation from Mean"	is			
	(a) Standard deviation		(b) Quartile deviation			
	(c) both		(d) none			
134.	Standard Deviation is					
	(a) absolute measure	(b) relative measure	(c) both	(d) none		
135.	Coefficient of variation	is				
	(a) absolute measure	(b) relative measure	(c) both	(d) none		
136.	——— deviation	is called semi-interq	uartile range.			
	(a) Percentile	(b) Standard	(c) Quartile	(d) none		
137.	———— Devi	iation is defined as ha	alf the difference betwee	en the lower & upper		
	quartiles.			_		
	(a) Ouartile	(b) Standard	(c) both	(d) none		

138.	Quartile Deviation for t	he data 1, 3, 4, 5, 6, 6,	10 is	
	(a) 3	(b) 1	(c) 6	(d) 1.5
139.	Coefficient of Quartile I	Deviation is		
	(a) (Quartile Deviation(c) (Quartile Deviation	•	(b) (Quartile Deviation > (d) none	(100)/Mean
140.	Mean for the data 6, 4, 1	1, 6, 5, 10, 3 is		
	(a) 7	(b) 5	(c) 6	(d) none
141.	Coefficient of variation	= (Standard Deviation	n x 100)/Mean	
	(a) true	(b) false	(c) both	(d) none
142.	If mean = 5, Standard d	eviation = 2.6 then the	e coefficient of variation	is
	(a) 49	(b) 51	(c) 50	(d) 52
143.	If median = 5, Quartile	deviation = 1.5 then t	he coefficient of quartile	deviation is
	(a) 33	(b) 35	(c) 30	(d) 20
144.	A.M of 2, 6, 4, 1, 8, 5, 2 i	s		
	(a) 4	(b) 3	(c) 4	(d) none
145.	Most useful among all r	measures of dispersion	n is	
	(a) S.D	(b) Q.D	(c) Mean deviation	(d) none
146.	For the observations 6,	4, 1, 6, 5, 10, 4, 8 Rang	e is	
	(a) 10	(b) 9	(c) 8	(d) none
147.	A measure of central ter	ndency tries to estima	te the	
	(a) central value	(b) lower value	(c) upper value	(d) none
148.	Measures of central tene	dency are known as		
	(a) differences	(b) averages	(c) both	(d) none
149.	Mean is influenced by e	extreme values.		
	(a) true	(b) false	(c) both	(d) none
150.	Mean of 6, 7, 11, 8 is			
	(a) 11	(b) 6	(c) 7	(d) 8
151.	The sum of differences	between the actual va	lues and the arithmetic r	nean is
	(a) 2	(b) -1	(c) 0	(d) 1
152.	When the algebraic sur figure of arithmetic mea		the arithmetic mean is rect.	not equal to zero, the
	(a) is	(b) is not	(c) both	(d) none

153.	In the problem							
	No. of shirts:	30-32	33–35		36–38	39–41	-	42–44
	No. of persons:	15	14		42	27		18
	The assumed mean is							
	(a) 34	(b) 37		(c) 4	0		(d) 43	
154.	In the problem							
	Size of items:	1–3	3–8		8–15	15–26		
	Frequency:	5	10		16	15		
	The assumed mean is							
	(a) 20.5	(b) 2		(c) 1	1.5		(d) 5.5	
155.	The average of a series of item within a series in		g averag	ges, ea	ch of which i	s based	l on a ce	rtain number
	(a) moving average(c) simple average			(b) v (d) r	veighted aver ione	rage		
156.	——— averages is	used for smo	othening	g a tir	ne series.			
	(a) moving average(c) simple average			(b) v (d) r	veighted aver ione	age		
157.	Pooled Mean is also cal	led						
	(a) Mean (b) G	Geometric Me	an	(c) C	Grouped Mear	n	(d) non	ie
158.	Half of the numbers in a have values greater tha			lues l	ess than the –			and half will
	(a) mean, median	(b)median, r	nedian	(c) n	node, mean		(d) non	e.
159.	The median of 27, 30, 2	6, 44, 42, 51, 3	87 is					
	(a) 30	(b) 42		(c) 4	4		(d) 37	
160.	For an even number of	values the me	edian is	the				
	(a) average of two mide (c) both	dle values		(b) n (d) r	niddle value ione			
161.	In the case of a continuo class interval in which			tion, t	he size of the		——— i	tem indicates
	(a) $(n-1)/2^{th}$	(b) $(n+1)/2^t$:h	(c) n	$/2^{th}$		(d) non	ie
162.	The deviations from moto other measures of ce			—— i	f negative sig	ns are	ignored	as compared
	(a) minimum	(b) maximu	m	(c) s	ame		(d) non	e

^{*} Question no. 155 and 156 is based on moving averages, which is not in foundation syllabus.

163.	Ninth Decile lies in the	class interval of	the ite	em			
	(a) $n/9$	(b) 9n/10	((c) 9n/20		(d) none item.	
164.	4. Ninety Ninth Percentile lies in the class interval of the item						
	(a) 99n/100	(b) 99n/10	((c) 99n/200		(d) none item.	
165.	is the value	of the variable at	which	the concentration	of obse	rvation is the densest.	
	(a) mean	(b) median		(c) mode		(d) none	
166.	Height in cms:	60–62	63–65	66–68	69–71	72–74	
	No. of students:	15	118	142	127	18	
	Modal group is						
	(a) 66–68	(b) 69–71		(c) 63–65		(d) none	
167.	A distribution is said to value in the			n the frequency ri	ses & f	alls from the highest	
	(a) unequal	(b) equal	((c) both		(d) none	
168.	always	lies in between	the ari	thmetic mean & 1	mode.		
	(a) G.M	(b) H.M		(c) Median		(d) none	
169.	Logarithm of G.M is the	e ———	of lo	garithms of the d	ifferent	values.	
	(a) weighted mean	(b) simple mea	n	(c) both		(d) none	
170.	is not mu	ich affected by fl	uctuat	ions of sampling.			
	(a) A.M	(b) G.M	((c) H.M		(d) none	
171.	The data 1, 2, 4, 8, 16 ar	e in					
	(a) Arithmetic progress	ion	((b) Geometric pro	gressio	on	
	(c) Harmonic progressi			(d) none			
172.	&	—— can not be	calcula	ated if any observ	ation is	s zero.	
	(a) G.M & A.M	(b) H.M & A.M	[(c) H.M & G. M		(d) None.	
173.	&	— are called rat	io aver	rages.			
	(a) H.M & G.M	(b) H. M & A.M	1	(c) A.M & G.M		(d) none	
174.	is a good	substitute to a v	veight	ed average.			
	(a) A.M	(b) G.M	((c) H.M		(d) none	
175.	For ordering shoes of va	arious sizes for r	esale, a	n siz	ze will	be more appropriate.	
	(a) median	(b) modal	((c) mean		(d) none	
176.	is called a	1					
	(a) mean	(b) mode		(c) median		(d) none	

^{*} Question no. 174 is not in foundation syllabus.

177.	50% of actual values wi	-		
	(a) mode	(b) median	(c) mean	(d) none
178.	Extreme values have —	effect on mod	e.	
	(a) high	(b) low	(c) no	(d) none
179.	Extreme values have —	——— effect on med	ian.	
	(a) high	(b) low	(c) no	(d) none
180.	Extreme values have —	—— effect on A.M		
	(a) greatest	(b) least	(c) some	(d) none
181.	Extreme values have —	——— effect on H.M	•	
	(a) least	(b) greatest	(c) medium	(d) none
182.	is used w	hen representation va	alue is required & distrib	ution is asymmetric.
	(a) mode	(b) mean	(c) median	(d) none
183.	is used w	hen most frequently o	occurring value is require	d (discrete variables).
	(a) mode	(b) mean	(c) median	(d) none
184.	is used w	hen rate of growth or	decline required.	
	(a) mode	(b) A.M	(c) G.M	(d) none
185.	In finding ———, the	e distribution has ope	n-end classes.	
	(a) median	(b) mean	(c) standard deviation	(d) none
186.	The cumulative frequer	ncy distribution is use	ed for	
	(a) median	(b) mode	(c) mean	(d) none
187.	In ——— the quantities	are in ratios.		
	(a) A.M	(b) G.M	(c) H.M	(d) none
188.	is used whe	en variability has also	to be calculated.	
	(a) A.M	(b) G.M	(c) H.M	(d) none
189.	is used whe	en the sum of absolute	e deviations from the ave	rage should be least.
	(a) Mean	(b) Mode	(c) Median	(d) None
190.	is used whe	en sampling variabilit	y should be least.	
	(a) Mode	(b) Median	(c) Mean	(d) none
191.	is used whe	en distribution patterr	has to be studied at var	ying levels.
	(a) A.M	(b) Median	(c) G.M	(d) none

192.	The average discovers			
	(a) uniformity in variab (c) both	ility	(b) variability in uniform (d) none	nity of distribution
193.	The average has relevan	nce for		
	(a) homogeneous popul (c) both	ation	(b) heterogeneous popul(d) none	lation
194.	The correction factor is	applied in		
	(a) inclusive type of dis (c) both	tribution	(b) exclusive type of dis (d) none	tribution
195.	"Mean has the least san	npling variability" pro	ove the mathematical pro	perty of mean
	(a) True	(b) false	(c) both	(d) none
196.	"The sum of deviations	from the mean is zero	o" —— is the mathematic	cal property of mean
	(a) True	(b) false	(c) both	(d) none
197.	"The mean of the two sa	amples can be combir	ned" — is the mathematic	cal property of mean
	(a) True	(b) false	(c) both	(d) none
198.	"Choices of assumed n	nean does not affect	the actual mean"— pro	ve the mathematical
	(a) True	(b) false	(c) both	(d) none
199.	"In a moderately asymmedian & mode"— is the		ean can be found out from erty of mean	n the given values of
	(a) True	(b) false	(c) both	(d) none
200.	The mean wages of two companies are equally wages		ual. It signifies that the	workers of both the
	(a) True	(b) false	(c) both	(d) none
201.	The mean wage in fact factory A pays more to	2	reas in factory B it is ₹ 5 actory B.	5,500. It signifies that
	(a) True	(b) false	(c) both	(d) none
202.	Mean of 0, 3, 5, 6, 7, 9, 1	2, 0, 2 is		
	(a) 4.9	(b) 5.7	(c) 5.6	(d) none
203.	Median of 15, 12, 6, 13,	12, 15, 8, 9 is		
	(a) 13	(b) 8	(c) 12	(d) 9
204.	Median of 0.3, 5, 6, 7, 9,	12, 0, 2 is		
	(a) 7	(b) 6	(c) 3	(d) 5

205.	Mode of 0, 3, 5, 6, 7, 9, 1	12, 0, 2 is		
	(a) 6	(b) 0	(c) 3	(d) 5
206.	Mode of 15, 12, 5, 13, 12	2, 15, 8, 8, 9, 9, 10, 15 is	8	
	(a)15	(b) 12	(c) 8	(d) 9
207.	Median of 40, 50, 30, 20	, 25, 35, 30, 30, 20, 30 i	is	
	(a) 25	(b) 30	(c) 35	(d) none
208.	Mode of 40, 50, 30, 20, 2	25, 35, 30, 30, 20, 30 is		
	(a) 25	(b) 30	(c) 35	(d) none
209.	——— in particu	ılar helps in finding o	out the variability of the c	lata.
	(a) Dispersion	(b) Median	(c) Mode	(d) None
210.	Measures of central ten	dency are called aver	ages of the ——order.	
	(a) 1 st	(b) 2 nd	(c) 3 rd	(d) none
211.	Measures of dispersion	are called averages o	of the ——order.	
	(a) 1 st	(b) 2 nd	(c) 3 rd	(d) none
212.	In measuring dispersion	n, it is necessary to kn	low the amount of ———	— & the degree of —
			(l-)i-(i 1:	
	(a) variation, variation(c) median, variation		(b) variation, median (d) none	
213.		n is designated as —-	——— measure of di	spersion.
	(a) relative	(b) absolute		(d) none
214.	The degree of variation	is designated as ——	measure of dis	persion.
	(a) relative		(c) both	(d) none
215.	For purposes of compa	rison between two or	more series with varyin	g size or no. of items,
	varying central values	or units of calculation	, only ——— mea	sures can be used.
	(a) absolute	(b) relative	(c) both	(d) none
216.	The relation Relative ra	nge = Absolute range	e/Sum of the two extreme	es. is
	(a) True	(b) false	(c) both	(d) none
217.	The relation Absolute r	ange = Relative range	e/Sum of the two extreme	es is
	(a) True	(b) false	(c) both	(d) none
218.	In quality control ——	—— is used as a subst	titute for standard deviat	ion.
	(a) mean deviation	(b) median	(c) range	(d) none
219.	factor he	lps to know the value	of standard deviation.	
	(a) Correction	(b) Range	(c) both	(d) none

220.	is ex	tremely sensitiv	e to th	ie siz	ze of the s	sample		
	(a) Range	(b) Mean		(c)]	Median		(d) Mode	
221.	As the sample size incr	eases, ———	—— al	lso t	ends to ir	icrease.		
	(a) Range	(b) Mean		(c) l	Median		(d) Mode	
222.	As the sample size incr	eases, range also	tends	s to i	increase t	hough not	proportion	ately.
	(a) true	(b) false		(c) l	ooth		(d) none.	
223.	As the sample size incr	eases, range also	tends	s to				
	(a) decrease	(b) increase		(c) s	same		(d) none	
224.	The dependence of ran	ge on extreme it	ems ca	an b	e avoided	by adopt	ing	
	(a) standard deviation	(b) mean devia	tion	(c) o	quartile d	eviation	(d) none	
225.	Quartile deviation is ca	lled						
	(a) semi inter quartile r	ange (b) quartil	e rang	ge (c) both		(d) none	
226.	When 1^{st} quartile = 20,	3^{rd} quartile = 30,	the va	alue	of quarti	le deviatio	n is	
	(a) 7	(b) 4		(c) -	-5		(d) 5	
227.	$(Q_3 - Q_1)/(Q_3 + Q_1)$ is							
	(a) coefficient of Quarti(c) coefficient of Standa			(b) coefficient of Mean Deviation(d) none				
228.	Standard deviation is σ^2	lenoted by (b) σ	(c) _v	$ olimits_{\sigma} oli$			(d) none	
229.	The square of standard	deviation is kno	own as	S				
	(a) variance(c) mean deviation			(b) standard deviation (d) none				
230.	Mean of 25, 32, 43, 53, 6	52, 59, 48, 31, 24,	33 is					
	(a) 44	(b) 43		(c) 4	42		(d) 41	
231.	For the following frequ	ency distribution	n					
	Class interval:	10–20	20–3	0	30-40	40-50	50-60	60–70
	Frequency: assumed mean can be t	20 caken as	9		31	18	10	9
	(a) 55	(b) 45		(c) 3	35		(d) none	
232.	The value of the standa	ard deviation do	es not	dep	end upor	n the choic	e of the orig	gin.
	(a) True	(b) false		(c) l	ooth		(d) none	
233.	Coefficient of standard	deviation is						
	(a) S.D/Median	(b) S.D/Mean		(c) S	S.D/Mod	e	(d) none	

234.	The value of the stand	lard deviation will ch	nange if any one of th	e observations is changed.			
	(a). True	(b) false	(c) both	(d) none			
235.	When all the values as	re equal then varianc	e & standard deviation	on would be			
	(a) 2	(b) -1	(c) 1	(d) 0			
236.	For values lie close to	the mean, the standa	ard deviations are				
	(a) big	(b) small	(c) moderate	(d) none			
237.	If the same amount i deviation shall	s added to or subtra	acted from all the va	alues, variance & standard			
	(a) changed	(b) unchanged	(c) both	(d) none			
238.	If the same amount is decrease by the ———		ed from all the values	s, the mean shall increase or			
	(a) big	(b) small	(c) same	(d) none			
239.	If all the values are multiplied by the same quantity, the ———— & ———— also would be multiple of the same quantity.						
	(a) mean, standard deviation (c) mean, mode		(b) mean , median(d) median , deviations				
240.	For a moderately non-	symmetrical distribu	tion, Mean deviation	n, Mean deviation = $4/5$ of standard deviation			
	(a) true	(b) false	(c) both	(d) none			
241.	For a moderately non-	symmetrical distribu	tion, Quartile deviatio	on = Standard deviation/3			
	(a) true	(b) false	(c) both	(d) none			
242.	For a moderately nor Standard deviation/3	5	bution, probable erro	or of standard deviation =			
	(a) true	(b) false	(c) both	(d) none			
243.	Quartile deviation = I	Probable error of Star	ndard deviation.				
	(a) true	(b) false	(c) both	(d) none			
244.	Coefficient of Mean Deviation is						
	(a) Mean deviation x 100/Mean or mode		(b) Standard deviation x 100/Mean or median				
	(c) Mean deviation x 1	.00/Mean or median	(d) none				
245.	Coefficient of Quartile Deviation = Quartile Deviation x 100/Median						
	(a) true	(b) false	(c) both	(d) none			
246.	Karl Pearson's measu	re gives					
	(a) coefficient of Mean Variation(c) coefficient of variation		(b) coefficient of S (d) none	(b) coefficient of Standard deviation (d) none			

247.	In —— range has the	greatest use.		
	(a) Time series	(b) quality control	(c) both	(d) none
248.	Mean is an absolute medeviation is a relative mediative mediation.		eviation is based upon it	t. Therefore standard
	(a) true	(b) false	(c) both	(d) none
249.	Semi-quartile range is o	one-fourth of the rang	e in a normal symmetrica	al distribution.
	(a) Yes	(b) No	(c) both	(d) none
250.	Whole frequency table	is needed for the calc	ulation of	
	(a) range	(b) variance	(c) both	(d) none
251.	Relative measures of di	spersion make deviat	ions in similar units com	parable.
	(a) true	(b) false	(c) both	(d) none
252.	Quartile deviation is ba	sed on the		
	(a) highest 50% (c) highest 25%		(b) lowest 25% (d) middle 50% of the it	em.
253.	S.D is less than Mean de	eviation		
	(a) true	(b) false	(c) both	(d) none
254.	Coefficient of variation	is independent of the	e unit of measurement.	
	(a) true	(b) false	(c) both	(d) none
255.	Coefficient of variation	is a relative measure	of	
	(a) mean	(b) deviation	(c) range	(d) dispersion.
256.	Coefficient of variation	is equal to		
	(a) Standard deviation >(c) Standard deviation >		(b) Standard deviation (d) none	(100 / mode
257.	Coefficient of Quartile I	Deviation is equal to		
	(a) Quartile deviation x(c) Quartile deviation x		(b) Quartile deviation x (d) none	100 / mean
258.	If each item is reduced	by 15 A.M is		
	(a) reduced by 15	(b) increased by 15	(c) reduced by 10	(d) none
259.	If each item is reduced	by 10, the range is		
	(a) increased by 10	(b) decreased by 10	(c) unchanged	(d) none
260.	If each item is reduced l	by 20, the standard do	eviation	
	(a) increased	(b) decreased	(c) unchanged	(d) none

261.	If the variables are inc	cre	ased or decreased by	the s	same amount	the sta	ndard	deviation is
	(a) decreased		(b) increased	(c) u	ınchanged		(d) no	one
262.	If the variables are inchanges by	cre	ased or decreased by	y the	same propor	tion, th	e stano	dard deviation
	(a) same proportion		(b) different proport	ion	(c) both		(d)	none
263.	The mean of the 1^{st} n	nat	tural no. is					
	(a) $n/2$		(b) (n-1)/2	(c) (n+1)/2		(d) no	one
264.	If the class interval is	en-end then it is diff	to find					
	(a) frequency		(b) A.M	(c) b	oth		(d) no	one
265.	Which one is true—							
	(a) A.M = assumed m	eai	n + arithmetic mean	of de	viations of te	rms		
	(b) G.M = assumed m	(b) G.M = assumed mean + arithmetic mean of deviations of terms						
	(c) Both			(d) r	none			
266.	If the A.M of any distr	If the A.M of any distribution be 25 & one term is 18. Then the deviation of 18 from A.M is						
	(a) 7		(b) -7	(c) 4	3		(d) no	one
267.	For finding A.M in Step-deviation method, the class intervals should be of							
	(a) equal lengths		(b) unequal lengths	(c) n	naximum len	gths	(d) no	one
268.	The sum of the square A.M	es (of the deviations of t	he va	riable is ——		— who	en taken about
	(a) maximum		(b) zero	(c) n	ninimum		(d) no	ne
269. The A.M of 1, 3, 5, 6, x, 10 is 6 . The value of x is								
	(a) 10		(b) 11	(c) 1	2		(d) no	one
270.	The G.M of 2 & 8 is							
	(a) 2		(b) 4	(c) 8			(d) no	one
271.	(n+1)/2 th term is me	dia	an if n is					
	(a) odd		(b) even	(c) b	oth		(d) no	ne
272.	For the values of a var	ria	ble 5, 2, 8, 3, 7, 4, the	medi	ian is			
	(a) 4		(b) 4.5	(c) 5			(d) no	one
273.	The abscissa of the ma	axi	mum frequency in th	ne fre	quency curve	e is the		
	(a) mean		(b) median	(c) n	node		(d) no	one
274.		2	3 4		5	6	7	7
	No. of men: Mode is	5	6 8		13	7	4	1
	(a) 6		(b) 4	(c) 5			(d) no	one

275.	The class having maxin	num frequency is calle	ed	
	(a) modal class	(b) median class	(c) mean class	(d) none
276.	For determination of m	ode, the class interval	s should be	
	(a) overlapping	(b) maximum	(c) minimum	(d) none
277.	First Quartile lies in the	class interval of the		
	(a) $n/2^{th}$ item	(b) n/4 th item	(c) $3n/4^{th}$ item	(d) $n/10^{th}$ item
278.	The value of a variate the	nat occur most often i	s called	
	(a) median	(b) mean	(c) mode	(d) none
279.	For the values of a varia	able 3, 1, 5, 2, 6, 8, 4 th	e median is	
	(a) 3	(b) 5	(c) 4	(d) none
280.	If $y = 5 x - 20 \& \overline{x} = 30$	then the value of \overline{y} is		
	(a) 130	(b) 140	(c) 30	(d) none
281.	If $y = 3 x - 100$ and $\overline{x} =$	50 then the value of \bar{y}	\bar{y} is	
	(a) 60	(b) 30	(c) 100	(d) 50
282.	The median of the num	bers 11, 10, 12, 13, 9 is	3	
	(a) 12.5	(b) 12	(c) 10.5	(d) 11
283.	The mode of the number	ers 7, 7, 7, 9, 10, 11, 11,	. 11, 12 is	
	(a) 11	(b) 12	(c) 7	(d) 7 & 11
284.	In a symmetrical distrib give	ution when the 3 rd qua	rtile plus 1 st quartile is ha	lved, the value would
	(a) mean	(b) mode	(c) median	(d) none
285.	In Zoology ———	— is used.		
	(a) median	(b) mean	(c) mode	(d) none
286.	For calculation of Speed	d & Velocity		
	(a) G.M	(b) A.M	(c) H.M	(d) none is used.
287.	The S.D is always taker	n from		
	(a) median	(b) mode	(c) mean	(d) none
288.	Coefficient of Standard	deviation is equal to		
	(a) S.D/A.M	(b) A.M/S.D	(c) S.D/GM	(d) none
289.	The distribution, for wh	nich the coefficient of	variation is less, is ———	- consistent.
	(a) less	(b) more	(c) moderate	(d) none

ANSWERS

1.	(b)	2.	(a)	3.	(c)	4.	(a)	5.	(b)
6.	(a)	7.	(d)	8.	(c)	9.	(b)	10.	(a)
11.	(a)	12.	(a)	13.	(b)	14.	(d)	15.	(a)
16.	(d)	17.	(b)	18.	(a)	19.	(b)	20.	(a)
21.	(b)	22.	(d)	23.	(a)	24.	(c)	25.	(b)
26.	(a)	27.	(a)	28.	(b)	29.	(b)	30.	(a)
31.	(c)	32.	(a)	33.	(b)	34.	(a)	35.	(a)
36.	(a)	37.	(a)	38.	(a)	39.	(a)	40.	(a)
41.	(d)	42.	(a)	43.	(a)	44.	(b)	45.	(a)
46.	(b)	47.	(a)	48.	(a)	49.	(d)	50.	(a)
51.	(a)	52.	(d)	53.	(a)	54.	(d)	55.	(b)
56.	(c)	57.	(a)	58.	(c)	59.	(a)	60.	(b)
61.	(b)	62.	(d)	63.	(a)	64.	(b)	65.	(b)
66.	(c)	67.	(a)	68.	(a)	69.	(a)	70.	(c)
71.	(c)	72.	(c)	73.	(a)	74.	(a)	75.	(d)
76.	(a)	77.	(b)	78.	(b)	79.	(a)	80.	(c)
81.	(b)	82.	(a)	83.	(b)	84.	(b)	85.	(a)
86.	(c)	87.	(c)	88.	(a)	89.	(b)	90.	(a)
91.	(b)	92.	(d)	93.	(a)	94.	(d)	95.	(c)
96.	(c)	97.	(a)	98.	(a)	99.	(c)	100.	(b)
101.	(a)	102.	(b)	103.	(c)	104.		105.	
106.	(b)	107.	(a)	108.	(d)	109.	(c)	110.	(a)
111.	(b)	112.	(c)	113.	(b)	114.	(b)	115.	(a)
116.	(b)	117.	(c)	118.	(c)	119.	(b)	120.	(a)
121.	(b)	122.	(b)	123.	(a)	124.	(b)	125.	(b)
126.	(c)	127.	(d)	128.	(d)	129.	(a)	130.	(c)
131.	(b)	132.	(a)	133.	(a)	134.	(a)	135.	(b)
136.	(c)	137.	(a)	138.	(d)	139.	(a)	140.	(b)
141.	(a)	142.	(d)	143.	(c)	144.	(c)	145.	(a)
146.	(b)	147.	(a)	148.	(b)	149.	(a)	150.	(d)
151.	(c)	152.	(b)	153.	(b)	154.	(c)	155.	(a)

156. (a)	157. (c)	158. (b)	159. (d)	160. (a)
161. (c)	162. (a)	163. (b)	164. (a)	165. (c)
166. (a)	167. (b)	168. (c)	169. (a)	170. (b)
171. (b)	172. (c)	173. (c)	174. (c)	175. (b)
176. (c)	177. (b)	178. (c)	179. (c)	180. (a)
181. (a)	182. (b)	183. (b)	184. (c)	185. (a)
186. (a)	187. (b)	188. (a)	189. (c)	190. (c)
191. (b)	192. (a)	193. (b)	194. (a)	195. (b)
196. (a)	197. (a)	198. (a)	199. (b)	200. (b)
201. (b)	202. (a)	203. (c)	204. (d)	205. (b)
206. (a)	207. (b)	208. (b)	209. (a)	210. (a)
211. (b)	212. (a)	213. (b)	214. (a)	215. (b)
216. (a)	217. (b)	218. (c)	219. (a)	220. (a)
221. (a)	222. (a)	223. (b)	224. (c)	225. (a)
226. (d)	227. (a)	228. (b)	229. (a)	230. (d)
231. (c)	232. (a)	233. (b)	234. (a)	235. (d)
236. (b)	237. (b)	238. (c)	239. (a)	240. (a)
241. (b)	242. (b)	243. (a)	244. (d)	245. (a)
246. (c)	247. (b)	248. (b)	249. (a)	250. (c)
251. (a)	252. (d)	253. (b)	254. (a)	255. (d)
256. (c)	257. (a)	258. (a)	259. (c)	260. (c)
261. (c)	262. (a)	263. (c)	264. (b)	265. (a)
266. (b)	267. (a)	268. (c)	269. (b)	270. (b)
271. (a)	272. (b)	273. (c)	274. (c)	275. (a)
276. (a)	277. (b)	278. (c)	279. (c)	280. (a)
281. (d)	282. (d)	283. (d)	284. (c)	285. (c)
286. (c)	287. (c)	288. (a)	289. (b)	